Chapter five focuses on quadratic functions and complex numbers, which is slightly different from Chapters 3 and 4 because they had linear functions that formed graphs with straight lines. The general equation for a quadratic function is y = ax

^{2}+ bx + c, where a, b, and c are constants and a≠0. If a = 0, then the graph would be a linear function. The lines on a quadratic graph are curved and forms a U-shaped curve called a parabola, which has a vertex point and an axis of symmetry. To solve a quadratic equation with the form ax

^{2}+ bx + c = 0, you would use the quadratic formula, where the solutions would be: .

For this project, we each get a problem of our own. We have to use quadratic functions as a mathematical models for a real-world problem found in the Trig. textbook. I did mine on the "Rectangular Field Problem". My work is shown below, along with a picture for each step of my problems.

## No comments:

Post a Comment